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Mechanisms that enable declining networks to avert structural
collapse and performance degradation are not well understood.
This knowledge gap reflects a shortage of data on declining
networks and an emphasis on models of network growth. Ana-
lyzing >700,000 transactions between firms in the New York
garment industry over 19 years, we tracked this network’s decline
and measured how its topology and global performance evolved.
We find that favoring asymmetric (disassortative) links is key to
preserving the topology and functionality of the declining net-
work. Based on our findings, we tested a model of network decline
that combines an asymmetric disassembly process for contraction
with a preferential attachment process for regrowth. Our simula-
tion results indicate that the model can explain robustness under
decline even if the total population of nodes contracts by more
than an order of magnitude, in line with our observations for the
empirical network. These findings suggest that disassembly mech-
anisms are not simply assembly mechanisms in reverse and that our
model is relevant to understanding the process of decline and
collapse in a broad range of biological, technological, and financial
networks.

complex networks � contraction � socioeconomic systems

Research on the dynamics and robustness of complex net-
works (1–3) has emphasized the study of global network

growth, identifying assembly mechanisms such as preferential
attachment (4, 5), vertex fitness (6), vertex duplication (7), and
fractal network growth (8), which, at the macroscopic level,
generate stable topological characteristics despite large fluctu-
ations in the microscopic network parameters. In addition,
mechanisms have been proposed that can produce stable topo-
logical metrics in networks of constant size (9–12). Notably,
methods based on percolation theory have significantly contrib-
uted to our understanding of how robust the static network
structures generated by these assembly mechanisms are to
fragmentation under random and targeted attack (8, 13–15).

Less is known about the dynamics and robustness of networks
under sustained decline. In declining networks, new nodes and
links may be added over time but the net process is a progressive
loss of nodes and links. Hence, although assembly mechanisms
may come into play, the emphasis must be on which disassembly
mechanisms help preserve the topological characteristics and
performance of the network. For example, Alzheimer’s research
examines how degradation in mental performance can be related
to the progressive loss and disconnection of neurons with age
(16). In an ecological context, analogous questions arise regard-
ing the vulnerability of food webs to habitat loss and fragmen-
tation (17, 18). In social and economic systems, network decline
has raised questions about the preservation of social capital (19),
resource allocation in developing economies (20), the prevention
of financial collapse (21), effective coordination among suppliers
(22), the restructuring of political systems (23), and lock-in into
inferior technological standards (24).

We analyze the interorganizational network that makes up the
famous New York City Garment Industry (NYGI) (25, 26),

which has persistently shrunk over the last 19 years. In this
network, nodes correspond to designers and contractors that are
linked through coproductions of annual runs of lines of clothing.
Designers design clothing and contractors fabricate it, but their
roles often overlap because the industry’s low-cost and quick-
to-market conditions entwine design and production (25, 27).
Our data include virtually all 10,000 plus firms and their
�700,000 bilateral exchanges, circa 1985–2003, as recorded by
the Union of Needle Trades and Industrial and Textile Employ-
ees (UNITE) (see Methods). Although these data resemble
nation-to-nation commodity flow or interbank payment data
(28–31), there are important differences. The links are not
directional as in commodity chains, which are typified by flows
from raw to finished goods along distinct stages of production.
Instead, in our data, links are primarily reciprocal. They reflect
the coproduction process between designers and contractors at
one stage in the production process. Also, we have a measure of
network performance not found in trade data: the fraction of
bilateral transactions with errors per annum, which directly
gauges the network’s loss of functionality.

In this article, we show that the topological robustness of a
declining network depends critically on how disassembly and
assembly processes act in conjunction with each other. We define
topological robustness as the ability of a network subject to both
contraction and growth processes to resist quick fragmentation
and to preserve the stability of key metrics characterizing the
network topology. Our analysis and model indicates that in a
declining network the growth process corresponding to partial
recovery follows preferential attachment (PA) (4), and the
contraction process favors the preservation of asymmetric links
(namely, interactions between high-degree nodes and low-
degree nodes). We label this contraction process asymmetric
disassembly and show that it is associated with stable topological
and functional features in a declining network. Song et al. (8)
showed that for growing networks disassortativity generates
self-similar structures that play a crucial role in preventing
network fragmentation. Our model complements these findings
by identifying disassembly mechanisms that avert network frag-
mentation in a distinct class of network problems corresponding
to sustained decline.

Empirical Results and Discussion
Topological robustness and network contraction. The starting point
for our analysis charts changes in the topology and performance
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of the NYGI network as it shrinks in size [see supporting
information (SI) Fig. S1 and Table S1]. The findings suggest that
in a declining network, topological robustness can be preserved
despite massive turnover and a substantial net loss of nodes and
links. The persistence of topological robustness as the network
evolves coincides with a stable measure of network performance.

Topological changes were measured with characteristics that
focus on the network’s connectivity and degree distribution and
that have been used in prior research on network dynamics (32).
Table 1 shows the observed contraction of the largest connected
component (LCC) and total number of links L, and the pro-
gressive decline in the average degree �k� of nodes. However, as
shown in Table 1, the LCC resisted fragmentation in the sense
that it contained a high and relatively stable proportion of the
total nodes within the empirical network over the years. Focus-
ing on the network’s topological features, Table 1 also shows that
the average path length �l� and diameter D of the network remain
stable. The degree distribution is characterized by a truncated
power-law and remains stable over the observation period, until
2000, when finite size effects in the network become stronger
(see Table 1 and Fig. S2). Fig. 1A shows how the cumulative
degree distribution Pcum(k) varies over the observation period,
where for a given year the distribution is calculated using all
transactions in that year (see SI Text and Table S2). In addition,
we track over time how the average over the degree of all nodes
�knn� directly connected to a reference node k scales with the
degree of that node (32). As shown in Fig. 1B, we find that this
relation is defined by �knn�k � k� with � � �0.5 (see Table 1),
which provides strong evidence for disassortativity (i.e., prefer-
ence of high-degree nodes to connect to low-degree nodes and
vice versa) (32) and the persistence of topological features in the
network (see also Figs. S3 and S4). Disassortativity is common
in biological, technological and financial networks (8, 29, 33, 34),
which suggests that asymmetric links may play an important role
in network robustness.

To measure changes in performance directly, we examine the
network’s error rate, given by the fraction of bilateral transac-
tions that include ‘‘refunds.’’ A refund is a reversal of a trans-
action between firms that occurs when the original exchange
involved an error (e.g., design mistakes, shorted goods, manu-
facturing errors, etc.). A low fraction of errors signifies high
performance. Fig. 1C shows how refunds as a percentage of total
transactions changed each year over the observation period. We
see that the fraction of links with errors remained reasonably
stable until 1998, after which its mean and variability rose
significantly. The observed correspondence between changes in
the network topology and functional performance suggest that
assembly and disassembly mechanisms, structure, and function
are strongly related (see Methods).

Assembly and Disassembly Mechanisms. Building on prior research
on the growth and cohesiveness of social networks (35, 36), we
first analyze the data to see whether local assembly rules for
nodes during global decline follow PA mechanisms. PA assumes
that a node’s degree provides a reasonable proxy measure for its
fitness when direct performance information is unavailable for
nodes (38, 37). In this way, a node’s probability of acquiring new
links is linearly proportional to its degree (fitness). We found
that newcomer firms enter with low degree (see Fig. S5), and,
consistent with past research, PA characterizes how newcomer
firms attach to incumbent firms. Fig. 2A shows the relative
probability Tk(t), compared with random firm selection, that a
link added at year t connects to an incumbent firm with k(t�1)
previous partners. This probability is defined by Tk(t) � k(t)v

with v � 1.20 � 0.06 (R2 � 0.81), which shows that the number
of newcomers’ links acquired by incumbent firms scales propor-
tionally with the firms’ degree (39).

Shifting our focus to deletion mechanisms for nodes, we found
that firms have a probability of deletion inversely proportional
to their degree (see Fig. S6), in line with realistic deletion
mechanisms found in other dynamic networks (40, 41). Given
that the mechanism acting on newcomer nodes that is respon-
sible for the partial growth process mirrors the mechanism by
which nodes are deleted as part of the contraction process, we
examine whether contraction and recovery processes for links
between incumbent nodes follow the same pattern.

Following this logic, we measure the relative probabilities
Rk

�(t) and Rk
	(t) that an incumbent firm with k links in year t�1

will lose and gain new incumbents’ links in year t (i.e., excluding
newcomer attachment). We again followed Newman (39) to
extract Rk

	(t), and found that a firm’s relative probability,
compared with random firm selection, of gaining new links by
connecting to other incumbent firms scales with the firm’s
degree as Rk

	(t) � k(t)v with v � 0.84 � 0.04 (R2 � 0.72) (see Fig.
S7). For the relative probability of link deletion, we calculate
Rk

�(t), assuming that links are randomly removed between
incumbent firms. Fig. 2B shows that the probability of a firm
losing a link decreases in proportion to the firms’ degree as k(t)v

with v � �0.41 � 0.04 (R2 � 0.54) and a significant exception
for the least connected firms. Our statistical analysis for links
shows that PA seems to explain the assembly rule, whereas the
disassembly rule is characterized by an asymmetric process that
favors firms with extreme low and high degrees.

Considering our results on assembly and disassembly rules for
links in the context of socioeconomic networks, differences in
the nature of the information available to firms creating new
links or breaking existing links may account for the observed
assembly and disassembly mechanisms. In assembly, the use of
a firm’s degree as a proxy for fitness when forming new links

Table 1. Decline and stable topological properties of the network

Year LCC (%) L �k� �l� D � kmin kmax �

1985 3,249 (95) 7,250 4.46 4.22 14 2.44 4 50 �0.52
1988 2,410 (94) 5,504 4.56 4.16 12 2.38 4 47 �0.49
1991 1,880 (93) 3,981 4.23 4.15 11 2.31 4 56 �0.55
1994 1,135 (93) 1,917 3.37 4.3 10 2.36 3 48 �0.52
1997 842 (91) 1,450 3.44 4.06 10 2.38 4 54 �0.55
2000 449 (87) 716 3.18 4.01 9 2.20 2 — �0.54
2003 190 (84) 228 2.4 4.07 10 2.09 1 — �0.56

LCC represents the total number of firms in the network’s largest connected component along with the observed percentage in
parentheses of the LCC in the empirical network, L gives the number of connections in the LCC, �k� is the average number of connections
per firm in the network, �l� is the average path length, and D is the diameter of the network (maximum distance between two firms).
Here �, kmin, and kmax correspond to the power-law exponent and the minimum and maximum cut-off values respectively, where the
function Pcum(k) � (k)�(� � 1) is validated by the Kolmogorov–Smirnov goodness-of-fit test and following Newman (42) for the calculations
(see SI Text, section 1). Finally, the table shows the exponent � of the nearest-neighbors average connectivity of nodes degree k as
defined by �knn�k � k�.
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makes sense because gathering direct performance data are
costly when there is no existing link that can act as a conduit for
quality information. By contrast, during disassembly there is
already a link in place. Through this link the quality of a trading
relationship can be judged based on firm-specific, first-hand
information taking into account the history of past interactions.
Because disassembly decisions can be based on direct data from
‘‘the horse’s mouth’’ rather than a proxy, the degree—a general
index of a node’s fitness—is less valuable than the firm-specific
information garnered through a link. This means that the lowest
degree firms could be excellent collaborators who have become
well adapted to an exclusive, high-quality relationship, an argu-
ment supported by field work that has found that asymmetric
links are indicative of good working partnerships in competitive
markets like the NYGI (27, 37).

Following this logic, we introduce a simple measure �ij to
capture the level of asymmetry of a link connecting two nodes
with degree ki and kj respectively, where �ij � (ki � kj)2/(ki 	 kj)2.
This measure produces values over the interval [0, 1], where �ij


 1 is a maximally asymmetric link, and is useful for comparisons
because it rescales the absolute differences in degree. Looking
at the empirical data to see how the frequency of refunds varies
across links, we found a negative correlation between the
asymmetry level of a link �ij and the probability of a refund
occurring �ij. This probability was calculated by a probit regres-

sion on �ij (P � 0.001) of the form �(�ij) �
1

1 � e��a	b�ij, where

a � �0.832 and b � �1.11 (see Fig. S8). The model was validated
by the Homer–Lemeshow goodness-of-fit test with P � 0.224.
This suggests that declining networks that favor asymmetric links
increase the likelihood of preserving the network’s functional
relationships.

Generalized Model of Contraction
Guided by our empirical evidence, we constructed a simple
model for network contraction that combines two main pro-
cesses: asymmetric disassembly, which represents the contracting
process, and PA, which represents the partial recovery process
in our network (see Fig. S9 for a graphical representation of the
model). In its general form, the model applies to undirected
networks; however, an extension to directed networks is pro-
vided in SI Text and Figs. S10 and S11. The inputs for the model
in each time step are the number of nodes deleted (DF) and
created (NF), and the number of links deleted (DL) and created
(NL) between incumbent nodes, all of which are given directly
by the empirical data (see Table S3). The simulation model is
initialized using the empirical network of 1985.

The first step in the model is motivated by the empirical
observation that the network experiences a sustained net loss of
firms each period. This generates the need for a rule on node
deletion.

i. Node deletion is treated probabilistically with the inverse
network connectivity providing a reasonable proxy for unob-
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Fig. 1. Topological stability. (A) We observe a stable cumulative distribution from 1985 to 1999 characterized by a broad-scale distribution over two orders of
magnitude on a log-log scale. The period 2000–2003 becomes noisy due to the small size of the network (see also Fig. S2). The reference line corresponds to a

truncated power law defined by Pcum(k) � k�(��1) e
�k
kmax with � � 2.3 and cut-off kmax � 50. The deviating points in the tail of the distributions all correspond to

the idiosyncratic behavior of a single firm. (B) Disassortativity. Following Vázquez et al. (32) we calculated the disassortativity of the network by the
nearest-neighbor average connectivity �knn�k � �k�k�Pc�k� �k of nodes with connectivity k, where Pc(k��k) is the conditional probability that a link belonging
to a node degree k connects to a node degree k�. The figure presents on a log-log scale the disassortativity for the network configuration in 1985 (blue circles),
1991 (green squares), 1997 (red crosses), and 2003 (black triangles). Dashed lines represent the fit to the data defined by �knn�k � k� where � � �0.5. Note that
in 2003 the correlation becomes noisy (see also Fig. S3). (C) The figure shows the percentage of links with errors or refunds for each year. Note the increase in
errors from 1999 to 2003. (Inset) Correlation between the total number of links (x axis) in descending order and the number of links with errors (y axis) for each
year on a log–log scale. The dashed line corresponds to the average error rate of 18%, which characterizes most of the observation period. The deviations at
the tail show that the increase in the error rate in 1999–2003 is not a simple result from the fluctuations in the total number of links.
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servable firm characteristics (e.g., age, size, etc.) that are
known to determine survival rates. A node m is randomly
selected and deleted from the LCC with a probability
Pdelete(m) � km

�1/� jk j
�1. The number of nodes deleted (DF)

each time step is fixed empirically by the number of firms that
do not appear in the dataset the following year and corre-
sponds to �25% of the LCC.

The second step captures the fact that incumbent firms make two
choices with respect to managing their links in each yearly
production cycle: first, they can remove a link that connected
them to a partner in the previous time period; second, they can
replace a removed link with a connection to a new partner.

ii. Asymmetric disassembly and PA consists of removing and
replacing links. For simplicity, we assume that links are
randomly selected and are subjected to the following rules:

iia. Removing. In line with our empirical findings, selected
links are removed with a probability defined by pij � 1�
��ki � kj

2/�ki � kj
2� , which is given by the asymmetry

level of the link. The number of links removed (DL) is taken
from the empirical data as the interactions in a given year
that do not recur in the following year, and corresponds
approximately to 25% of the LCC.

iib. Replacing. For each link lij that is removed, one randomly
chosen node (either i or j) replaces that link with probability
q, otherwise both nodes lose the link. When replacing a link,
the chosen node i or j selects a new node m following PA,
with a probability P(m) � �km � 1 /�� j k j � 1 . The
probability q was empirically fixed at q � 0.9, which corre-
sponds to the average percentage of new links created
between incumbent firms (NL/DL) over the entire obser-
vation period. Lower q values lead to a more rapid frag-
mentation of the network (see Fig. S12).

The third step corresponds to the creation of new links between
newcomer and incumbent firms. This accounts for the parallel
regrowth process observed in the network.

iii. PA growth characterizes how newcomer nodes are added to
the network. The degree of each newcomer is taken from an
exponential distribution with mean value 2, following our
empirical findings (see Fig. S5). Newcomers link to an
incumbent m following PA rules (4), defined by P(m) �
�km � 1 /�� j k j � 1 . The number of nodes added (NF)
each time step is given empirically by the new number of
firms that appear in the dataset the following year, and
corresponds approximately to 15% of the LCC.

Simulation Results and Discussion
Fig. 3 A–D summarize the results. The data suggest that when the
correct disassembly and assembly mechanisms are combined, the
model accounts well for the empirically observed behavior and
replicates the finding of topological robustness. We focus first on
the recovery process. Fig. 3A shows the agreement between the
actual empirical and model-generated values for the degree
distribution when we use PA assembly mechanisms, as in the
original model, and when we use random assembly mechanisms
instead. Under random assembly, steps iib and iii of our model
are modified so that incumbent and newcomer nodes attach to
a randomly selected node m with probability P(m) � 1/N where
N is the total number of nodes in the LCC. As can be seen from
the plot, different recovery rules are associated with distinct
degree distributions. The PA assembly rules combined with
asymmetric disassembly produce a high level of agreement with
the empirically observed degree distribution for the contracting
network.

Focusing on the contraction process as a whole, we compare
the asymmetric disassembly process with three alternative mech-
anisms—random node deletion, random link removal and ran-
dom assembly. Under random node deletion, step i of our model
is modified so that nodes are selected and deleted with equal
probability. For random link removal, step iia is modified so that
the probability of link deletion is now given by pij � 1. Note as
shown in Fig. 3B, that random link removal (red crosses) yields
a flat distribution for the relative probability of link deletion
Rk

�(t) per node degree k. By contrast, asymmetric disassembly
(blue circles) gives a good approximation to the empirical values
shown in Fig. 2B. For the third alternative mechanism, random
assembly, we replaced the PA assembly rules in steps iib and iii
with random attachment as previously defined, P(m) � 1/N.

To test the network’s robustness to fragmentation under each
contraction mechanism, we measured the corresponding ratio
between the model-generated number of nodes in the LCC and
that of the empirical LCC. Fig. 3C shows that a contraction
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Fig. 2. Assembly and disassembly mechanisms. (A) Preferential attachment.
Here, we considered the process by which links between incumbent and
newcomer firms are created. Following Newman (39), the figure shows on a
log-log scale the relative probability Tk(t) that a newcomer firm added at time
t connects to a incumbent firm with k previous connections. Tk(t) is the ratio
between the actual probability of connection and the probability of connec-
tion in a network where connectivity does not matter. The fit (dashed line)
corresponds to the function Tk(t) � k(t)� with � � 1.2, which is a fair approx-
imation to a linear preferential attachment giving the finite size of the
network. The deviating points in the tail of the distribution all correspond to
the idiosyncratic behavior of a single firm. (B) Link deletion. The figure shows
on a log-log scale the relative probability of link deletion Rk

�(t), compared with
random link removal for each firm degree k. The dashed line corresponds to
the function k(t)v with v � �0.41. Note that the least and the best connected
firms are specially resistant to the loss of links. The data values are taken for
the entire observation period whenever a firm survives for the following year.
This gives �18,500 data points. Also note that if the calculated relative
probabilities Tk(t) and Rk

�(t) were to follow a random process, Tk(t) � 1 and
Rk

�(t) � 1 for all k values. The deviating points in the tail of the distribution
correspond to the highly asymmetric connectivity of few high-degree firms
that decreases their probability to losing links.
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process that follows asymmetric disassembly (blue circles) best
corresponds with the observed values over time, whereas ran-
dom assembly (black triangles) and random link removal (red
crosses) clearly do not reproduce the resistance to fragmentation
of the LCC. Random node deletion (green squares) leads to an
even faster network collapse.

Finally, we studied the network’s robustness to topological
changes generated by asymmetric disassembly and the three
alternative contraction mechanisms. Fig. 3D shows for the
nearest-neighbor average connectivity defined by �knn�k � k�, the
ratio between the model-generated and empirical exponent �.
Note that only asymmetric disassembly (blue circles) is able to
reproduce the observed disassortativity of the network (Fig.
S13), and performs similarly well with important connectivity
metrics such as the average path length and diameter of the
network (see Fig. S14). These comparative results show that
assembly and disassembly mechanisms have distinct effects on
robustness.

Conclusions
Despite a large body of research on network growth, the
complementary process of decline has been given short shrift. In
both the case of growth and decline, a key issue is robustness.
The specific network of firms in the NYGI that we have analyzed
and modeled exhibits a remarkably robust topology and stable
performance measures while undergoing severe decline. Ulti-

mately the network collapses into a highly centralized configu-
ration characterized by elevated error rates and reduced overall
performance, suggesting the existence of a threshold of mini-
mally functional connectivity.

At the microscopic level, the observed network robustness can
be linked to the enhance functional and structural preference for
asymmetric interactions. This result has an interesting counter-
part in ecological network research on how species may be linked
together (34) and respond to realistic extinction sequences (41).
Our simulation studies enable us to extend our findings beyond
the specific empirical context that we have focused on and show
that alternative combinations of assembly and disassembly pro-
cesses lead to a more rapid network fragmentation and changes
in structural features. By augmenting studies of network growth
with a general model of contraction and examining the conse-
quences for topological robustness, we hope to open up new
directions for research on network dynamics and robustness.

Methods
NYGI Dataset. This is longitudinal empirical dataset on the interfirm network
of the New York City garment industry from 1985 to 2003. Our data include
�700,000 transactions from January 1985 to December 2003 for 10,000 firms
that collaborated in the production of clothing. A link exists between two
firms if they coproduce a garment. For example, the typical production process
begins with a designer that develops a line of clothing. Each garment in the
line is made into a sample prototype, which is disassembled into its component
parts such as shelves, collars, waistbands, and so forth. The components of the
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Fig. 3. Model validation. (A) Recovery mechanisms (1985–1987). Blue dots represent the empirical degree distribution in 1987. The gray region represents the
95% confidence intervals for the model-generated distribution in 1987 after asymmetric disassembly (AD) and PA recovery mechanisms in steps iib and iii of our
model. The black region represents the 95% confidence intervals for the model-generated distribution in 1987 after asymmetric disassembly (AD) and random
attachment recovery mechanisms. (B) Link removal. The figure shows the relative probability of link deletion Rk

�(t) per node degree k after asymmetric
disassembly (blue circles) and random link removal (red crosses). Fit to the data are shown by a dashed line defined by k(t)v with v � �0.39 � 0.03 (R2 � 0.64)
for asymmetric disassembly (blue circles) and v � 0.011 � 0.002 (R2 � 0.05) for random deletion (red crosses). Note again that the deviating points in the tail of
the distribution correspond to the highly asymmetric connectivity of few high-degree firms that decreases their probability to shedding links. (C) Network
fragmentation. The figure shows the ratio (average �2 SD) between the model-generated number of nodes in the LCC and that of the empirical LCC for each
year after asymmetric disassembly (blue circles), random link removal (red crosses), random recovery (black triangles), and random node deletion (green squares).
(D) Disassortativity. For the nearest-neighbor average connectivity defined by �knn�k � k�, the figure shows the ratio (average �2 SD) between the model-
generated and empirical exponent �, when the network is subjected to asymmetric disassembly (blue circles), random link removal (red crosses), random recovery
(black triangles), and random node deletion (green squares).
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sample are then sent by the designer to contractors that cut components from
fabric in lots large enough to be mass produced. The cut fabric is then sent by
the designer to sewing contractors that sew the fabric together into the
garments that are sold directly to consumers at retailers. Links are typically
undirected. Information and finances flow reciprocally as part of the produc-
tion process, rather than directionally. That is, although the designer may
produce the original design and sample prototype, the contractors in the
network often add design changes that simplify production or enhance
efficiency, which makes a final design a reciprocal effort. In our data, all
designers and contractors are in the same finished goods stage of the pro-
duction process; there are no downstream raw fabric suppliers (that only sell
cloth) or upstream retailers (that only buy finished goods) in the data. All firms
are free to make connections of their own choice; there is no governing body
that suggests or mandates connections. Each transaction in the data are
associated with a volume of exchange or a run. Because a single line of
clothing is often produced in several runs, we aggregated runs between
designers and contractors into a single link that represents the whole copro-
duction job. We focused on the largest connected component, which corre-
sponds to 95% of the population. The dataset was collected and made
available by the Union of Needle Trades and Industrial and Textile Employees
(UNITE). UNITE organizes nearly all the firms in the NYGI and uses a highly
reliable record system (27) that requires firms to report all their network
contacts quarterly. These self-reports are checked by union auditors for accu-
racy. Nonunionized firms are typically small, fly-by-night firms that elude
discovery because of their brief existence (27).

Network Performance. In the context of the NYGI, we acknowledge that error
rates can fluctuate for various reasons. Based on prior research and personal
communication with UNITE (43), we viewed errors as primarily due to the
network’s failure to govern effective collaborations among interdependent
firms. However, error rates may occur for other reasons. For example, adverse
selection could leave a biased sample of firms operating in the market or
market power could enable some firms to force fake returns. On the basis of
our data, we cannot fully discriminate between these different micro mech-
anisms. Nonetheless, these other factors seem unlikely. Firms that may be
victimized can appeal to UNITE, which protects weak firms against abuses of
market power. Similarly, with the onslaught of international competition,
adverse selection seems unlikely in that the fittest firms are most likely to
survive.

ACKNOWLEDGMENTS. We thank Mark Fricker, Neil Johnson, Janet Smart, and
other colleagues in the CABDyN Complexity Centre (Oxford) and at North-
western Institute on Complex Systems (Northwestern University) for helpful
discussions and Paul David, Roger Guimerà, János Kertész, Bruce Kogut,
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